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Abstract. The problem of generating symmetry adapted wavefunctions, within the 
framework of the generator coordinate method, is examined. Results for the discretisation 
technique and the natural state formalism are applied to the quartic anharmonic oscillator. 

1. Introduction 

If the Hamiltonian of a quantum system has an unitary constant of motion, there is an 
operator S such that 

[H,S]=O and S + = S - '  (1) 
where S +  is the adjoint and S-l the inverse of S.  One can easily prove that an exact 
eigenstate of H is also an eigenfunction of SS (see e.g. Lowdin 1962). The question 
whether this property can be extended to approximate variational wavefunctions has 
been studied by Laskowski and Lowdin (1972). They showed that a sufficient condi- 
tion is the stability of the variational subspace Xv under the symmetry operation S.  
Here stability means that if $ ( x )  belongs to Xv so does S$(x) .  In this case S is also a 
constant of motion of the projected Hamiltonian Hv=PvHPv, where P, is the pro- 
jector onto XV, so that the theorem follows immediately. The aim of this paper is to 
apply the results of Laskowski and Lowdin to a space of generator coordinate (GC) 
trial functions (Griffin and Wheeler 1957). For the sake of simplicity we restrict 
ourselves to a single unitary transformation S having its eigenvalues sl, SZ, . . . , sk on 
the unit circle in the complex plane. The more general case where H is invariant under 
a group of unitary transformations can be treated in an analogous way (Lowdin 1962). 
The quartic anharmonic oscillator will be used as an illustrative example. 

2. Symmetry properties of generator coordinate wavefunctions under the Brink- 
Weiguny condition 

In the generator coordinate method (GCM) a variational subspace is generated by 

t Part of this work was carried out during the author's stay at the Department of Quantum Chemistry, 
Uppsala University, and supported by the Interuniversitair Instituut voor Kernwetenschappen (Belgium) 
and the Swedish Institute (Sweden). 
$ For this purpose it is sufficient to assume that S is normal, i.e. SS+ = S+S.  
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taking linear superpositions 

11*ll< +a 

of continuously labelled basis functions r$ (x la) with adjustable weight functions f ( a ) .  
Brink and Weiguny (1968) showed that the space 5 " ~  spanned in this way is stable 
under S provided that the d(xla) are closed under S in the sense that? 

Sd ( x  la 1 = d (x I d a  1). (3 1 
This implies that to each symmetry operation S there corresponds a transformation 
a ( a )  defined in the space of generator coordinates. 

From From the Brink-Weiguny (BW) condition it is easy to verify the stability of 
XGC under S. Indeed one has 

where J ( a )  is the Jacobian and a- ' (a )  the inverse of the transformation a ( a ) =  a'. 
Consequently the solutions of the eigenvalue problem 

H G C ~  (X ) = E$ (X ) ll*Il< +CO (5 1 
for the projected Hamiltonian HGc = PGCHPGC, will be eigenfunctions of S. Under 
the BW condition the GC wavefunctions are symmetry adapted. We will verify this 
result for two explicit representations of the formal eigenvalue problem (5). 

2.1. The Hill- Wheeler representation 

Applying the variational principle directly to the GC trial function ( 2 )  one finds that 
the weight functions which yield stationary energy values must satisfy the Hill- 
Wheeler (HW) integral equation 

(H(a ,  a')-EA@, a'))f(a')da'=O. (6 )  

Here H(a ,  a') and A(a, U ' )  are respectively the well known Hamiltonian and overlap 
kernels which are Hermitian. The BW condition implies further that 

H ( a ( a ) ,  a(a'))= H(a ,  a')  = H(a-'(u),  (T-'(a')) 

A(a(a) ,  @(a' ) )  = A(a, a ' ) =  A(a-'(a), ( ~ - ' ( a ' ) )  

which are kernel symmetries induced by (3). Combining (7) with the HW equation one 
arrives at the result 

J (H(a ,  a')-EA(u, a'))f(a-'(a))/lJ(a)l da  = 0. (8) 

Comparing this with the original HW equation and using (4) we conclude that, if !(a)  is 

t In this case of a continuous group this condition should be taken for the infinitesimal elements (Brink and 
Weiguny 1968). 
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a solution to (8), f(a) and g(a)  are proportional. Consequently S$(x) - +(x), i.e. the 
GC wavefunctions are eigenfunctions of S. 

2.2. The natural state representation 

The projected Schrodinger equation (5) is purely conceptual since the projector PGC is 
not known explicitly. This drawback can be removed by constructing a basis for the 
space XGC. Recently a formalism which provides a complete orthonormal set for XGC 
has been suggested (Lathouwers 1976a). We give here a short summary which at the 
same time introduces the necessary notation. 

It is a general strategy to choose the intrinsic functions (b(xla) to be square 
integrable in x for all values of a. In this case one can always normalise c$(xla) such 
that it is square integrable in both x and a. Whenever the variables of a square 
integrable function have been divided into two subsets one can define the so called 
left- and right-iterated kernels: 

A(a, a‘)= (b*(xla)(b(xla’)dx 

X(x, x’)= c$(xla)d*(x’la)da 
(9) 

I 
I 

which are both Hermitian and positive (Schmidt 190’7a, b, c). The spectral properties 
of A(a, a‘) and X(x, x’) are strongly connected. In fact one can show that they have 
the same, positive eigenvalues A. 3 A . . . > 0 which have zero as their only possible 
point of accumulation. The associated eigenfunctions are related by simple integral 
transform having (b ( x  la)  as transformation kernel: 

The extended Hilbert-Schmidt theorem (see e.g. Tricomi 1957) then states that the 
intrinsic function has a norm convergent expansion of the form 

which is unique up to a phase convention in A!,”. The expansions of the final 
wavefunction in terms of natural states used in density matrix theory are of the type 
(11). In view of this analogy and the optimal convergence of (11) we will refer to this 
series as the natural expansion of the intrinsic functions. The y n ( x )  and bn(a)  are 
termed coordinate natural states (CNS) and generator coordinate natural states (GCNS) 

respectively. 
It is easy to show that XGC coincides with the space spanned by the CNS. 

Consequently we can now replace the formal projected Schrodinger equation ( 5 )  by 
the matrix eigenvalue problem 

CO m 

n=O H::cn = Ec, n-0  C I C n 1 2 < + a  
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where H z z  = y z ( x ) H y , ( x )  dx. The question now arises of how the BW condition 
affects the properties of the natural states and the structure of the secular equation. In 
order to answer this question we consider the projection operators: 

associated with the eigenvalues S k .  They are idempotent, Hermitian, mutually 
exclusive and generate a resolution of the identity 

K 

k = l  
P i  =Pk P: =Pk PkP/ = 0 1 Pk = I. (14) 

In other words they divide the Hilbert space into orthogonal subspaces associated with 
a specific symmetry. Furthermore one has the relations 

SPk = Pks = S k P k .  (15) 

(1 6 )  

The BW condition together with (15) implies that 

s+k (x la) = 4 k  (x la(a)) = s k 4 k  (x la) 

where +k(Xla)=Pk4(Xla) is the component of the intrinsic state in the subspace 
characterised by Pk. The following set of equalities then holds: 

5 bfl(a)4k(Xla)da 

= I bfl(a(a))4k(XIa(a>>da(a) 

= S k  h ( a ( a ) ) 4 k ( X I a ) d a ( a )  

(17) 

If, for fixed n and k, these integrals are not identically vanishing (17) reflects a 
property of the GCNS b,(a) which we can mark by assigning to it the label k. 
Identifying the first and last integrals we can conclude that 

b: (a 1 = Skb ))IJ(a)l. (1 8) 
This relation expresses the symmetry property of the GCNS induced by the BW 
condition. Via the integral transforms (10) we can derive the corresponding property 
for the CNS. It follows that 

which combined with (13) implies that 

P k Y  f: ( x )  = Y 1: (x  ). 

We have thus proved that, under the BW condition, the CNS are eigenstates of S.  They 
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can be divided into subsets situated in one of the subspaces characterised by the 
projectors P k .  Consequently the matrix Hz: will be block diagonal and the secular 
equation (12) will split into K different eigenvalue problems, one for each symmetry 
type sk .  

3. Conservation of symmetry in approximation schemes 

The question now arises whether the approximation schemes, which can be drawn 
from the Hill-Wheeler and natural state representations, conserve the symmetry 
properties demonstrated above. 

3.1. The discretisation technique 

The most straightforward and commonly used procedure to solve approximately the 
HW equation is to replace the integral by a summation. This leads to a generalised 
matrix eigenvalue problem 

N 

(Hij -EAij)c; = 0 
;= 1 

where Hi; = H(ai ,  ai), Aij = A ( a i ,  a j )  and al, a2,  . . . , aN is a set of mesh points. Clearly 
(21) is nothing but the diagonalisation of the Hamiltonian in the non-orthogonal basis 
c$(xlal), c$(xlaz), , , . , ~(XIQN).  Several suggestions for choosing a relevant set of 
mesh points have been made: equidistant, by a quadrature rule, via an energy 
criterion,. . , (for a review see e.g. Van Leuven and Bouten 1975). However in either 
of these cases there is no reason why the subspace spanned by {c$(xlai)} is stable under 
S even though the BW condition may hold. Consequently the approximate wavefunc- 
tions will in general not be symmetry adapted. This can of course be remedied by first 
projecting c$(xla) on one of the symmetry subspaces, i.e. by using c$k(xla) as an 
intrinsic state. However in realistic cases this may turn out to be a rather laborious 
task. 

As an alternative one can consider the functions q5(xla0), Sq5(x)ao), 
. . , , SK-'c$(xlao) where the initial point a. is, e.g., the value of the GC'S which 
minimises the energy of (xla). Using the reduced Cayley-Hamilton equation 

K n ( s - s k I ) = o  
k = l  

it is easy to show that the above set is stable under S.  On the other hand, according to 
the BW condition the functions can be written as q5(xlai) where ai+l= a(ai ) .  Thus by 
starting out from an initial point and taking as the next point the value of the function 
cr in the previous point one generates a set of mesh points for which the associated 
subspace is stable under S. The process can be continued by taking aK as the point 
which combined with UO,  a l ,  . . . aK-1 gives the lowest ground state and then repeating 
the procedure with U K  as a starting value?. The advantage of this combined energy- 
symmetry algorithm over the plain discretisation procedure is evident. It generates 

t The procedure also makes sense when, as for continuous groups, S has infinitely many eigenvalues but 
only a finite number of them are present in the variational subspace. 



838 L Lathou wers 

mesh points in a way which is at the same time simple and ‘cheap’ and produces 
symmetry adapted wavefunctions. 

3.2. Truncation of the natural expansion 

Upper bounds to the GC eigenvalues can be found by diagonalising the Hamiltonian in 
the space spanned by the first N coordinate natural states, i.e. by solving the matrix 
equation for the N X N  upper left corner of HZ;. It is easy to see that this is 
equivalent to replacing the original intrinsic function by its natural expansion trun- 
cated after N terms. In view of the convergence properties of the natural expansion 
one could say that this approximation scheme preserves a maximum amount of 
intrinsic information. 

The CNS corresponding to the eigenvalues A1, A’, . . . , AN can be grouped into 
subsets situated in the subspaces characterised by P I ,  Pz, . . . , PK (see 9 2.2.). Since 
the latter are orthogonal the N X N Hamiltonian matrix will be block diagonal, each 
block corresponding to one of the symmetry types SI, SZ, . . . , SK. Consequently the 
secular equation can be broken up into K independent matrix eigenvalue problems 
which can be treated separately. We conclude that, under the BW condition, the 
truncation of the natural expansion is a symmetry-conserving approximation. 

4. Illustration: the quartic anharmonic oscillator 

As an illustration we will consider the quartic anharmonic oscillator 

1 d2 1 
2mdx’ 2 

+ - m u  ’ x  + Ax 4. H =  __-  

Like the simple harmonic oscillator ( A  = 0) this operator is parity invariant, i.e. 

For A 3 0 H has bound states which we try to describe in terms of translated Gaussian 
intrinsic states 

where the exponential normalisation factor is included in order to make all kernels 
appearing in.(25) square integrable. According to a theorem of Wiener (1933) the 
above continuously labelled set is complete. The GCM will therefore be exact and 
approximation schemes can be tested effectively. In addition it is clear that the d(xlu) 
are closed under S since 

such that a ( a )  = -a and IJ(a)l= 1. 
The Hill-Wheeler kernels are easily calculated: 

A(a, a’)= exp(-ra2) exp[-s(a -a’)’] exp(-ra’’) (27) 



Symmetry properties in the generator coordinate method 839 

1 a+a ’  H(a,  a ’ ) = A ( a ,  a‘){  - [ 2 s - 4 s 2 ( a  -a’)’]+- 
2m 

They are invariant under inversion of both variables: 

H(a ,  a ’ )  = H(-a ,  -a ’ )  A(a, a ’ ) = A ( - a ,  - U ‘ )  (29)  

which are the kernel symmetries corresponding to (24) .  As mentioned earlier the 
discretisation of the HW equation for (27)  and (28)  will not lead to symmetry adapted 
wavefunctions. One can remedy this drawback by projecting out the correct sym- 
metries before the variation. Here S has two eigenvalues, + 1  and - 1 ,  which are both 
infinitely degenerate since every even or odd function is an eigenfunction of S. 

The corresponding projectors onto positive and negative parity subspaces are 

P, = ( I  S ) / 2 .  

H*(U, a ‘ ) = f ( H ( a ,  a’)*H(-a,  u’ )*H(a,  -a ’ )+H(-a ,  -a’))  

(30)  

The kernels for the projected intrinsic states P,q5(xla) are therefore given by 

(31)  
A*(Q, a ’ )=$(A(a ,  a’)*A(-a,  ~ ’ ) * A ( u ,  -a’)+A(-a,  -U ’ ) ) .  

Discretisation of the corresponding HW equations leads to even (+) or odd (-) 
wavefunctions. 

In order to apply the natural state formalism one first has to solve the eigenvalue 
problem for the overlap kernel A(u, a‘). In the Gaussian case (27)  analytical solutions 
for eigenvalues and eigenfunctions have been found (Lathouwers 1976a): 

where y = [ r ( r  + 2 ~ ) ] ’ / ~  and we have used the notation (H,, is a Hermite function) 

for oscillator eigenstates. The associated coordinate natural states can be derived 
from (10) by direct integration. The result reads 

Both the CNS and the GCNS are scaled oscillator eigenstates. They are even or odd 
according to whether n is even or odd. Hence, the labels + and - should be assigned 
in the following way: 
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The non-zero values of the matrix elements of HE: are given by 

where the brackets denote integrals of powers between oscillator eigenstates JI, (x I$). 
These quantities can be calculated in closed form (Brandas and Reid 1975) of from 
recursion relations between Hermite polynomials 

(nlx'ln) =$(2n + 1) 

(nIx21n+2)=$[(n + l ) ( n  +2)]ll2 

(nlx"n) =$(2n2+2n + 1) 

(n1x"n +2)=$(2n  +3)[(n + l) /(n +2)]"' 

(nlx41n+4)=$[(n +l)(n+2)(n+3)(n+4)]"2 

(37) 

In view of the symmetry properties of the CNS'S the Hamiltonian matrix of order 2 N  
factorises into two N-dimensional blocks corresponding to positive and negative 
parity. 

In table 1 we have listed some results for the ground and first excited states of the 
quartic anharmonic oscillator at different values of the coupling strength A. Three 
discretisation procedures were considered. DI and ~2 correspond to discretisation of 
the unprojected (equations (27), (28)) and projected (equation (3 1)) kernels respec- 
tively. In both cases each point was selected such as to give the lowest possible energy 
if combined with the ones already chosen (Caurier 1975). In ~3 the combined 
energy-symmetry algorithm was used. Here this means that if a point ai is chosen the 

Table 1. Results for the ground and first excited states of the quartic anharmonic 
oscillator. The calculations were done with the scale factors 2s = CT = 1. This value 
minimises the expectation value ($o(cr)lHl$o(cr)) at h = 1. Figures in parentheses indicate 
the dimension needed for stability on the fifth decimal place. 

A D1 D2 D3 NSD 'Exact' 
~~~ ~~ ~~ 

0.1 0.559158 (7) 0.559146 (4) 0.559154 (17) 0.559146 (5) 0.559146 
Eo 0.5 0.696183 (9) 0.696190 (4) 0.696177 (13) 0.696176 (6) 0.696176 

1.0 0.803788 (11) 0,803926 (4)t 0.803773 (17) 0.803771 (7) 0.803770 

0.1 1.769507 (9) 1.769503 (5) 1.769503 (11) 1.769503 (7) 1.769503 
El 0.5 2.324424 (11) 2.324438 (5)t 2.324411 (15) 2.324407 (6)  2.324406 

1.0 2.737914 (15) 2.739201 (5)t 2.737898 (21) 2.737893 (8) 2.737892 

i program interrupted for approximate linear dependence. 
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next one is -ai since a ( a )  = -a .  The column marked NSD (natural state diagonalisa- 
tion) is generated by diagonalising matrices defined by (36)-(37). 

5. Discussion 

Comparing the DI and NSD results it is clear that the latter are by far superior. More 
accurate energy values are obtained with fewer basis states and the NSD wavefunctions 
have the proper symmetry. The NSD is also more economical. The computer time 
needed to produce the above results was roughly a factor 50 larger for DI as compared 
to NSD. This is due to the time-consuming scanning of a grid in order to find the 
energetically most favourable mesh points. 

Symmetry has been restored in ~2 and ~ 3 .  In the case of projection before 
variation this advantage is largely destroyed by the rapid occurrence of approximate 
linear dependences?. This is a consequence of the fact that one is selecting basis 
functions in a smaller space (in this case half the space). The chosen states resemble 
each other more which leads to larger overlaps; a familiar origin of approximate linear 
dependences. ~3 produces results of higher accuracy than DI. The number of basis 
functions is in most cases larger. However, the necessary computer time is less since 
only half the number of points are to be selected while the others are prescribed by 
symmetry. This advantage will become more pronounced when several sk are 
involved or when one is dealing with a group of symmetry operations. Thus in realistic 
cases, where the calculation of matrix elements between projected states may become 
very difficult, ~3 provides a way to avoid projection before variation. 

In view of the above results, the combined energy-symmetry algorithm is probably 
the best discretisation alternative to the diagonalisation in natural states. 

6. Conclusions 

In this paper we have verified that, both in the Hill-Wheeler and in the natural state 
representations, the GCM wavefunctions are symmetry adapted if the Brink-Weiguny 
condition is satisfied. From the practical point of view we derived an algorithm for 
choosing mesh points which guarantees that this property is conserved in the dis- 
cretisation technique. On the other hand it was shown that the truncation of the 
natural expansion leads to a splitting, according to symmetry, of the secular equation. 
A numerical test on the quartic anharmonic oscillator showed that the diagonalisation 
in natural states is qualitatively and economically superior to the discretisation tech- 
niques among which the one equipped with the suggested energy-symmetry algorithm 
was most competitive. 
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